
Object Based Computing: A NextStep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 7:Initializing Objects

Chapter 7
Initializing Objects: A
Tour of the Factory

fac•to•ry \’fak-t(e-)re¯\ n, pl -ries

(1582)

1: a station where resident factors trade

2a: a building or set of buildings with facilities for manufacturing

b: the seat of some kind of production (the vice factories of the slums)

— fac•to•ry•like \-,lı¯k\ adj

We have now introduced the four fundamental techniques used by object based computing

systems to allow you to be productive. We will now take a bit more detailed look at how to get

going creating objects. One of the first things we often need to do when creating a new object is

set an initial value associated with an object. The values inside an object are stored in instance

variables. They are the integers, floating point numbers, strings and other data structures inside

our black boxes. In Chapter 3 we created an object that printed out the words "hello world" when

a button was pressed. Exercise four suggested creating an object that would have two action

methods. One would increment the internal state of an object and one would decrement the state

of an object. But what if we wanted to start the initial state of the object at a value other then

zero? If we put the following lines:

// Initialize the state of instance value

myInt = 100;

in either the action methods it would get re-initialized every time we press the button. We could

Page 7-1 Sun Jun 20 1993 16:09:20 EDT

Object Based Computing: A NextStep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 7:Initializing Objects

add another button called "initialize" and have another action method run this code every time we

ran the program, but that would require us to manually reset everything every time the program

started up. There is a better way. We talked in earlier chapters about how all objects are

"created" form in a factory. That these factories were grouped together is trees and that they

defined the class of all objects. If we had a car that we wanted to set some initial conditions on,

wouldn’t the natural place to do that be in the factory that the car is created? This is the same

way that we initialize objects. We send a message to the factory and ask it to perform some

tasks for us every time it creates a new object.

Up until now, all of our methods always started with a dash ("-") character or an minus sign. This

indicated that each of the messages went to instances of objects. If we start a method with a "+"

sign, the message will not go to instances of the object, but will be redirected to go to the factory

that created the object. Lets take a look at the code we would insert into exercise 3-4 to initialize

the object:

+ new

{

 self = [super new];

myInt = 100;

return self;

}

The first line says "send the new message to the the superclass of this objects." In this case, we

are a sub-class of the Object class so the super class is the Object class. The word super is a

reserved word in Objective C. By sending a message to super, we can always talk to the

superclass of any object we are working with. The result of the [super new] message is a

pointer of type id. It is stored in the variable self. Self is a reserve word in Objective C that

holds a pointer to the object that we are currently in. New methods are the only place in our

programs that self will ever be changed. If you ever see self on the left side of the equal sign

outside of a new method, waning signs should go up.

The second line initializes myInt to be 100. The last line returns a pointer to the object we just

created. This line is required so other programs that ask for a new instance of our object can

reference it by name. If you need a new instance of our object in another program, you should be

able to add the lines:

id myNewHelloObject;

myNewHelloObject = [MyObject new];

You might ask yourself, why do I have to use bother sending the new method to the Object class?

Why can’t I just use "raw" C to allocate memory and initialize my object? Why can’t I just leave

out the [super new] line? And indeed, you theoretically can. But this defeats the whole purpose

of re-using all the code already done for us. All of the C code to find the size of objects and then

allocate memory for them is already done for you. It is in a centralized place and the parts that

take a lot of time have been optimized for performance. If a faster or more efficient memory

allocation method comes along the people at NeXT will just incorporate it into a single place an all

your programs that use the Object classes new method will suddenly become faster. Things like

this really start adding up if you play by the rules.

Page 7-2 Sun Jun 20 1993 16:09:20 EDT

Object Based Computing: A NextStep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 7:Initializing Objects

Summary

Whenever you need to initialize the state of a new object which is not a sub-class of View,

add the following lines to the beginning of the class implementation file;

+ new

{

 self = [super new];

// your initialization goes here

return self;

}

A subclass of View requires a newFrame:: instead of a new. This is covered in chapter 8:

simple drawing.

Note that you don’t have to declare the new method in you header file. This is because you are

not creating a method from scratch, you are simply adding to the existing new method. The

arguments and returned values must thus be the same as in the

Here is the complete program for creating an object that is has an integer as an instance variable,

initializes that number to 100 in the factory and has two action methods that increment and

decrement the state of the instance variable. The lines we add are in bold. The rest of the lines

are created by the "unparse" operation form Interface Builder.

Page 7-3 Sun Jun 20 1993 16:09:20 EDT

Object Based Computing: A NextStep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 7:Initializing Objects

Contents of MyObject.h

/* Generated by Interface Builder */

#import <objc/Object.h>

@interface MyObject:Object

{

int myInt;

}

+ new;

- event1:sender;

- event2:sender;

@end

Page 7-4 Sun Jun 20 1993 16:09:20 EDT

Object Based Computing: A NextStep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 7:Initializing Objects

Contents of MyObject.m

/* Generated by Interface Builder */

#import "MyObject.h"

#import <stdio.h>

@implementation MyObject

+ new {

self = [super new];

myInt = 100;

return self;

}

- event1:sender

{

myInt++;

printf("myInt++ = %d\n", myInt);

return self;

}

- event2:sender

{

myInt--;

printf("myInt-- = %d\n", myInt);

return self;

}

@end

Page 7-5 Sun Jun 20 1993 16:09:20 EDT

Object Based Computing: A NextStep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 7:Initializing Objects

For advanced readers:

There are times when you also want to separate initialization steps from the new method. For

example if you have an object that you want to reset to a set of default values you would like to

initialize the state of the object when it came out of the factory but not re-allocate the memory. In

this case, the Objective C convention is to use an -initialize method1. This allows you to

over-ride other objects initialization code. Your new would look like the following:

+ new

{

 self = [super new];

[self initialize];

return self;

}

-initialize

{

// the following used only if the super class has an initialize

 [super initialize];

// add your own initialization code here

return self;

}

Exercises

6-1. If you added the following line in the new method:

+ new {

self = [super new];

myInt = 100;

printf("new: myInt initialized to %d\n", myInt);

return self;

}

When would you expect the printf to be executed? If you said when the program starts

up or "launches" you would be right.

6-2 There are several ways to initialize complex C data structures. What happens if you use a

string as an instance variable? What about a matrix of integers? See a copy of A C

1See Journal of Object Oriented Programming, Summer 1990, John Hopkins article

Page 7-6 Sun Jun 20 1993 16:09:20 EDT

